Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress

نویسندگان

  • Katherine L. Schutt
  • James B. Moseley
چکیده

The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast.

The fission yeast Sty1/Spc1 MAP kinase, like the mammalian JNK/SAPK and p38/CSBP1 kinases, is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, heat shock, UV light and the protein synthesis inhibitor anisomycin. Sty1 is activated by a single MAPKK, Wis1. We demonstrate that the conserved MAPKKK phosphorylation sites Ser 469 and Thr 473 in the catalytic ...

متن کامل

AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast.

The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy homeostasis, which, in response to a fall in intracellular ATP levels, activates energy-producing pathways and inhibits energy-consuming processes. Here, we report that fission yeast cells lacking AMPK activity are unable to advance entry into mitosis in response to nitrogen starvation and cannot undergo proper G1...

متن کامل

Nitrogen Regulates AMPK to Control TORC1 Signaling

BACKGROUND Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size. RESULTS Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1)...

متن کامل

The Win1 mitotic regulator is a component of the fission yeast stress-activated Sty1 MAPK pathway.

The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, me...

متن کامل

Sum1, a highly conserved WD-repeat protein, suppresses S-M checkpoint mutants and inhibits the osmotic stress cell cycle response in fission yeast.

The S-M checkpoint ensures that entry into mitosis is dependent on completion of DNA replication. In the fission yeast Schizosaccharomyces pombe, the SM checkpoint mutant cdc2-3w is thought to be defective in receiving the checkpoint signal. To isolate genes that function in the checkpoint pathway, we screened an S. pombe cDNA library for genes that, when overexpressed, could suppress the check...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017